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Photonic nanostructures simultaneously maximizing spectral and spatial overlap between fundamental and second-
harmonic confined modes are highly desirable for enhancing second-order nonlinear effects in nonlinear media.
These conditions have thus far remained challenging to satisfy in photonic crystal cavities because of the difficulty
in designing a band gap at the second-harmonic frequency. Here, we solve this issue by using instead a bound state
in the continuum at that frequency, and we design a doubly resonant photonic crystal slab cavity with strongly
improved figures of merit for nonlinear frequency conversion when compared to previous photonic crystal designs.
Furthermore, we show that the far-field emission at both frequencies is highly collimated around normal incidence,
which allows for simultaneously efficient pump excitation and collection of the generated nonlinear signal. Our results
could lead to unprecedented conversion efficiencies in both parametric down-conversion and second-harmonic gen-
eration in an extremely compact architecture. © 2019 Optical Society of America under the terms of the OSA Open Access
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1. INTRODUCTION

Highly efficient second-order nonlinear frequency conversion
would heavily impact a number of applications in current nano-
photonics research, such as biosensing [1,2], nonlinear spectros-
copy [3,4], and efficient nonclassical radiation sources [5]. For
these purposes, developing compact devices with high conversion
efficiency is of significant interest, and there has been substantial
effort towards designing resonant cavity structures with the aim of
enhancing the efficiency of nonlinear frequency conversion.

For second-order nonlinear materials, the cavities that offer the
strongest enhancement of the frequency conversion are doubly
resonant, i.e., supporting resonances simultaneously at both the
first-harmonic (FH) and the second-harmonic (SH) frequencies
[6–9]. Achieving such doubly resonant cavities for nonlinear
frequency conversion represents a long-standing challenge in
optical device design. In addition to the stringent requirement of
the double resonance, the nonlinear overlap factor, involving the
fields of the first- and the second-harmonic modes and the
spatial distribution of the χ�2� tensor, must be sufficiently large
to ensure an efficient frequency conversion process. Doubly res-
onant cavities have been demonstrated in on-chip ring-resonator
structures [10,11] but with relatively large footprint. Recently,
further progress was made by exploiting topology optimization
to design small-footprint micropost and microring cavities with
enhanced theoretical nonlinear efficiency [12,13]. Due to the top-
ology optimization, however, these devices incorporate a number

of very fine structural features that make them challenging to
fabricate in practice.

Photonic crystal (PhC) defect cavities patterned in thin slabs
support ultra-long-lived resonant modes confined in volumes
approaching the diffraction limit [14,15], which makes them
attractive candidates for a number of applications, including non-
linear harmonic generation. In addition, they also provide a high
degree of far-field radiation pattern engineering [16,17], which
could facilitate in-coupling from and out-coupling to free space.
Singly resonant photonic crystal slab cavities patterned in nonlin-
ear materials have already shown very large nonlinear conversion
efficiencies [18–22], despite the lack of a confined resonance
at the second harmonic. These results promise that engineering
doubly resonant modes in such structures could yield unprec-
edented enhancement. However, designing confined modes ful-
filling the doubly resonant condition with either one-dimensional
nanobeams or two-dimensional photonic crystal slab cavities has
proven very challenging [23–27]. Photonic crystal slab cavities are
usually designed starting from a partial photonic band gap in the
guided mode spectrum. This strategy can be successfully applied
to design a high-Q cavity at the first harmonic. However, the
second-harmonic frequency range generally lies entirely inside the
light cone of the slab such that not even a partial photonic band
gap is possible. As a result, in spite of several decades of efforts in
optimizing photonic crystal cavity designs, there has not been any
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report of a successful doubly resonant photonic crystal cavity
structure for second-order nonlinear frequency conversion.

In this paper, we introduce a design of a doubly resonant
photonic crystal cavity with high modal overlap factor for χ�2�

nonlinear frequency conversion. This design is built upon the
concept of bound states in the continuum (BIC), which has re-
cently received renewed interest in photonics [28]. BICs can be
observed in various systems, but in PhC slabs in particular they
correspond to modes that lie inside the light cone but are none-
theless non-radiative, fully guided inside the slab. Thus, the key
idea here lies in abandoning the commonly held notion that hav-
ing photonic band gaps at both the first- and second-harmonics is
an essential prerequisite to design doubly resonant PhC cavities.
Indeed, it was recently shown that a heterostructure cavity can be

realized in a two-dimensional PhC slab without a band gap [29].
The concept is illustrated in Figs. 1(a) and 1(b). The starting
structure is a regular PhC made by a hexagonal lattice with lattice
period a of air holes of radius r in a slab with thickness d and
refractive index n [Fig. 1(a)]. A heterostructure design can then
be formed by introducing PhC regions with different hole radii as
shown in Fig. 1(b). Even with no band gap, modes localized in the
core region of such a structure can still be observed close to a
band-edge frequency of the photonic bands of the underlying
PhC. When these band-edge modes have a diverging quality
factor due to a BIC effect, a large Q can also be expected for
the heterostructure modes—in particular in the limit of increasing
core size [29]. In our previous work [29], we also found that
having a transition region between the core and the outer regions
[Fig. 1(b)] further improves the quality factor of the heterostruc-
ture cavity.

Below, we use this route to design a high-Q localized mode
at the SH frequency and to precisely tailor the doubly resonant
condition, starting from photonic bands that fulfill the right sym-
metry properties for efficient χ�2� nonlinear frequency conversion.
To show the results on a practical photonic platform, we explicitly
choose the slab material to be gallium nitride (GaN), in which
efficient continuous wave SH generation has been observed for
singly resonant photonic crystal slab cavities with FH in the near
infrared [21,22]. The design strategy hereby introduced could be
extended to different wavelength ranges as well as other material
platforms. In addition to the applications in frequency conver-
sion, these results could also prove important towards exploiting
second-order nonlinearities to reach the regime of photon block-
ade [30,31], thus opening the door to the engineering of single-
photon Fock states in integrated quantum photonics.

2. RECIPE FOR BAND ENGINEERING

We begin our study by designing the photonic bands of the GaN
photonic crystal slab as shown in Fig. 1(a) to satisfy the following
conditions:

1. A band with a band edge mode outside the light cone at
the FH frequency ω1.

2. A band with a singly degenerate band edge mode at the Γ
point at a frequency ω2 ≈ 2ω1.

3. The band-edge modes in 1. and 2. are simultaneously
either a maximum or a minimum of their corresponding bands.

4. The periodic parts of the electric field of these two band-
edge modes have a nonzero nonlinear overlap factor.

Below we discuss the rationales behind these conditions. The
nonlinear overlap factor between two resonant modes for second-
harmonic generation is defined as [32]

β1 �
1

4

R
drϵ0
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ijkχ

�2�
ijk �r��E�

1iE2jE�
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1iE
�
1jE2k��R
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��R

drϵ0ϵ2�r�jE2j2
�
1∕2 , (1)

where χ�2�ijk is the second-order nonlinear susceptibility tensor for
the material, E1 and E2 are the mode profiles, and ϵ1�r� and ϵ2�r�
are the relative permittivity profiles at the FH and the SH
frequencies, respectively. Here, we take into account that the
permittivities in general are different for the first- and second-
harmonic modes. Assuming the GaN slab is grown with its c axis
along the z direction (orthogonal to the slab plane), the dominant
χ�2� components are xxz, yyz, and zzz [33]. In a PhC that is

Fig. 1. (a) Schematic of a photonic crystal slab of thickness d with a
hexagonal lattice with lattice period a of air holes with radius r.
(b) Schematic of a heterostructure cavity—dashed hexagons show the
core, transition, and outer regions, which have Nc , Nt , and No layers
of holes, respectively, such that the hexagon side lengths are
l 1 � Nca, l2 � �Nc � Nt�a, and l3 � �Nc � Nt � No�a. In the image,
Nc � Nt � No � 4, and the corresponding hole radii are rc � 0.2a,
rt � 0.26a, and ro � 0.32a. (c) Photonic bands for the quasi-TE modes
for a regular PhC slab with d � 0.28a, r � 0.22a, and refractive index
n � 2.32. The light cone is shaded gray. (d) Photonic bands for the
quasi-TM modes for the same d and r as in (c) and slab refractive index
n � 2.38. The green and red bands in panels (c), (d) highlight the bands
from which the heterostructure modes are later derived. The dotted
green/red lines show the corresponding bands computed for r � 0.25a.
(e) Electric field E2

x � E2
y in the center of the slab for the mode at theM

point, marked by a cross in (c) with a k vector in the y direction.
(f ) Electric field Ez in the center of the slab for the mode at the Γ point,
marked by a cross in (d). (g) Radiative quality factors for the two high-
lighted bands in (c) and (d).
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symmetric with respect to the x − y plane bisecting the slab, the
positive- and negative-symmetry photonic modes are predomi-
nantly Ex,y and Ez polarized, respectively (quasi-TE and quasi-
TM). Thus, the two modes in Conditions 1 and 2 can be either
both quasi-TM (coupling through χ�2�zzz) or quasi-TE at the FH
and quasi-TM at the SH (coupling through χ�2�xxz and χ�2�yyz ). Since
the hexagonal lattice PhC slab has a photonic band gap for the
quasi-TE modes at low frequencies, which could help with the
localization and the quality factor of the heterostructure modes,
we will look for a quasi-TE FH and a quasi-TM SH mode.
Of course, for other materials or other orientations of the
GaN slab, the relevant χ�2� components have to be considered
when making this choice.

At the end of this section we will also discuss how Conditions
1 and 2 ensure not only the resonance matching (ω2 ≈ 2ω1) but
also that the heterostructure modes are derived from a photonic
crystal mode with an infinite quality factor, and hence they can
have high Qs at both the FH and the SH frequencies. Condition
3 is simply required to ensure that a heterostructure cavity will
localize light in its central region for both frequencies and needs
no further discussion. Condition 4 imposes mode matching
for the periodic parts of the Bloch modes and will be further
discussed below.

We use the guided-mode expansion method [26] to scan the
parameters d and r for the photonic crystal in order to find bands
that match all four conditions above. The material dispersion is
taken into account by setting two different values of the slab re-
fractive index for the quasi-TE and the quasi-TM simulations.
Namely, we set n � 2.32 and n � 2.38, as for GaN, at wave-
lengths around 1.3 μm and 0.65 μm, respectively. In Fig. 1(c),
we show the photonic band structure for the quasi-TE modes
of the PhC with d � 0.28a, r � 0.22a, and n � 2.32, while
in panel (d) we show the quasi-TM modes of the same PhC
but with n � 2.38. As can be seen, there is a pair of bands that
satisfy conditions 1, 2, and 3 from our list, highlighted in green in
panel (c) and in red in panel (d).

Beyond the polarization matching, it is also crucial to consider
the fact that β1 is proportional to a spatial integral over the local
field contributions that can add up constructively as well as de-
structively. This generally imposes phase-matching conditions for
guided modes, while for localized modes where the average k
vector is zero, the mode profiles must still be engineered such that
β1 does not vanish. In other words, even for modes that are co-
localized in the same region of space, we must also ensure that the
integral in the numerator of Eq. (1) is large. For a heterostructure
cavity, a localized mode derived from a single band is expected to
be well approximated by

En,p�r� �
Z
BZ

dkf n,p�k�eik·ρEkn�r�, (2)

where ρ is the in-plane component of r, Ekn�r�eik·ρ are the Bloch
modes of the nth band from which the heterostructure mode is
derived, and fn,p�k� is some envelope function. The index p
reflects the fact that a number of envelope functions could be
supported. Assuming that fn,p�k� is narrowly centered around
the band edge, as must be the case in the limit of a heterostructure
size spanning multiple lattice periods, we can approximate
Ekn�r� ≈ Ek0n�r�, where k0 is the band-edge Bloch vector.
Note that, due to the C6 and time-reversal symmetries, Ekn�r�

is the same for any of the possible k0 choices for a band edge
at the M or the K points, and it must also be real valued.

Given these considerations, in Supplement 1 we study the
overlap terms that need to be non-vanishing for the FH and
SH modes of the form of Eq. (2). One of the terms is between
the envelope functions f �k�, and we find it to be always non-zero
when the SH envelope f2,p 0 �k� is centered around Γ. Intuitively,
this result stems from the fact that, in a homogeneous material, an
SH guided mode at Γ (i.e., constant E-field in real space) is phase
matched with an FH standing-wave field of the form cos�kρ� for
any k. This is because the FH field would enter the overlap term
in Eq. (1) as cos2�kρ�. The second overlap integral that must be
non-vanishing is between Ek01�r� and Ek 0

02
�r�, i.e., the periodic

parts of the PhC Bloch modes at the FH and SH frequencies.
Looking at Eq. (1), we note that, regardless of the symmetries
of the Ek01 profile, the spatial dependence of E2

k01x
and E2

k01y
is always even with respect to reflections both in the x − z and
in the y − z planes as is also evident in Fig. 1(e). Thus,
Condition 4 translates to the requirement that the Ek 0

02z
profile

must also be even with respect to both reflections. We took this
into account in designing our PhC bands as can be seen
in Fig. 1(f ).

Finally, since the mode in a heterostructure cavity is derived
from the band-edge modes in a photonic crystal as shown in the
discussions below Eq. (2), to form a high-Q heterostructure cavity
it is desirable that the corresponding band-edge mode has infinite
Q . We note that there are two ways to achieve an infiniteQ : First,
band modes outside the light cone of a PhC slab [gray shaded
region in Figs. 1(c) and 1(d)] have infinite intrinsic lifetime
and are perfectly confined around the slab region [34]. In con-
trast, inside the light cone there is a continuum of radiation
modes, as well as a number of quasi-guided bands, that are par-
tially confined in the slab but most generally have a finite radiative
lifetime. Even in that region, however, it is possible to have non-
radiative bound states in the continuum, either due to symmetry
or due to an accidental destructive interference of the radiated
light [28]. In particular, any singly degenerate mode at the Γ point
of the band structure must necessarily be non-radiative due to
symmetry [35,36]. This is what motivates our particular require-
ment in Condition 2 for a singly degenerate mode at Γ. To
confirm our expectations, in Fig. 1(g) we plot the radiative quality
factors corresponding to the two bands highlighted in Figs. 1(c)
and 1(d). As can be seen, the Q of the green band at the band
minimum at the M point goes to infinity since this mode lies
outside the light cone, while the Q of the red band at the band
minimum at Γ goes to infinity since the mode is a BIC.

3. CAVITY MODES AND FIGURES OF MERIT

On the basis of these regular PhC modes, we can now introduce
the cavity modes through the heterostructure design schematically
shown in Fig. 1(b). We define three hexagonal regions: core, tran-
sition, and outer, with radii rc , rt , ro, respectively. The size of the
regions is defined by the number of hexagonal “layers” of holes in
each of them �N c ,N t ,No�, or, alternatively, through the side
length of the hexagons as explained in Fig. 1(b). Because the
two bands in Figs. 1(c) and 1(d) have a minimum at the band-
edge frequency, the core region of the heterostructure is sur-
rounded by holes with a larger hole radius. In the cavity design
that we study, we set �rc , rt , r0� � �0.22a, 0.23a, 0.25a� (see
Supplement 1; also note that in the schematic of Fig. 1(b),
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the difference of the radii is larger for visualization purposes). The
dotted lines in Figs. 1(c) and 1(d) thus show the bands for the
regular PhC in the outer region of the cavity, which lie, as needed,
at a higher frequency than the core-region (solid) bands.

To simulate the electromagnetic modes of the heterostructure,
we use Lumerical FDTD solutions—a commercial finite-differ-
ence time-domain solver (see Supplement 1). These modes are
shown in Figs. 2(a)–2(c) for �Nc ,Nt ,No� � �6, 4, 14�. In
panel (a), we show the electric field of the SH mode at reduced
frequency ω̄2 � ω2a∕�2πc� � 0.889, corresponding to wave-
length λ2 � 652 nm for a lattice constant a � 580 nm. At the
FH frequency, we find two degenerate modes at ω̄1 � 0.444,
shown in Figs. 2(b) and 2(c). These profiles can be understood
as heterostructure modes described by Eq. (2) with two envelope
functions f1,1�k� and f1,2�k�. In our FDTD simulation, we also
find higher-order modes at the FH frequency, but there is more
than 5 nm spectral difference between those and the ones shown
in Figs. 2(c) and 2(d), even for the largest core size Nc � 14 stud-
ied below. At the SH frequency, the only mode that we find to be
resonant in the core region and with the correct mode-matching
symmetries for SHG is the one shown in Fig. 2(a).

In Fig. 3(a), we show the radiative quality factors Qr of the
three modes of the heterostructure as a function of the core region
size Nc , while keeping Nt � 4, No � 14. As expected, Qr in-
creases with increasing Nc and becomes particularly large for
the FH modes—approaching one million. The SH mode has
a quality factor ranging from 1100 to 5900, which is also remark-
ably high given the fact that the mode is deep inside the light cone
of the PhC and that there is no SH photonic band gap. In
Fig. 3(b), we plot the two important figures of merit for nonlinear
second-harmonic generation: the product Q2

1rQ2r , as well as a
dimensionless version β̄ of the nonlinear overlap factor of
Eq. (1) as defined in Ref. [12], written as

β̄ � λ3∕21

R
drϵ̄�r��E2

1xE
�
2z � E2

1yE
�
2z��R

drϵ1�r�jE1j2
��R

drϵ2�r�jE2j2
�
1∕2 , (3)

where λ1 is the free-space wavelength at the FH frequency, and
ϵ̄�r� is defined to be 1 in the nonlinear dielectric and 0 outside.
This dimensionless overlap factor allows us to compare this figure
of merit independently of the magnitude of the χ�2� values and of

the FH wavelength. We note that both Qr and the β̄ associated
with the two modes ω1,1 and ω1,2 are expected to be the same due
to symmetry, and the slight difference is likely due to the FDTD
simulation mesh and boundary conditions, which break the
hexagonal symmetry. Furthermore, note that with larger Nc,
the cavity becomes multimode with a decreasing frequency sep-
aration between the modes. These additional modes correspond
to higher-order envelope functions fn,p�k� in Eq. (2).

Finally, we consider a realistic experimental realization of
second-harmonic generation in our cavity and estimate the con-
version efficiency in the undepleted pump limit. For this, we will
need to estimate the coupling coefficients of the radiative channels
that will be used for pump in-coupling and SH signal out-
coupling. Thus, in Figs. 3(c) and 3(d) we show the far-field emis-
sion profiles of the FH mode [Fig. 2(b)] and the SH mode
[Fig. 2(a)], respectively. In Supplement 1, we also show these pro-
files for a range of core size values for all three modes. These plots
illustrate one additional advantage of our design in terms of
second-harmonic generation: namely, all emission profiles have
a strong lobe within a small angle around the vertical direction.
This holds particularly true for the SHmode, because its envelope
function f2�k� is centered around Γ. Note that the emission at
exactly zero angle is vanishing because of the BIC at Γ.
Importantly, however, all of the generated second-harmonic signal
can be collected with a small numerical aperture from above the
cavity, which is a significant improvement to previous studies
using a photonic crystal platform. Furthermore, the strong lobe
of the FH mode at zero emission angle facilitates free-space
in-coupling of the pump radiation. We note that the vertical
emission at the FH frequency is generally not guaranteed, but
it is nevertheless observed for our particular design. In general,
this can also be induced (or strengthened) through cavity mod-
ifications that specifically introduce k � 0 components in the
Fourier transform of the cavity modes [16,17].

These considerations imply that efficient in- and out-coupling
to the cavity can be achieved by exciting and collecting within a
small angle around the vertical direction [schematically shown in
Fig. 3(f )]. To study the frequency conversion efficiency in such an
experimental setup, we consider in- and out-coupling through
part of the far field, assuming that a fraction of the radiative qual-
ity factor of the FH mode is due to coupling to the input channel.

Fig. 2. (a) Electric field R�Ez� in the center of the slab for a heterostructure cavity mode at reduced frequency ω̄2 � ω2a∕�2πc� � 0.889 in a PhC
with d � 0.28a. The heterostructure parameters are �Nc ,Nt ,No� � �6, 4, 14� and �rc , rt , ro� � �0.22a, 0.23a, 0.25a�, and the dashed hexagons mark the
core and transition regions. (b), (c) Electric field jE2

x � E2
y j in the slab center for the same cavity, for two degenerate resonant modes at frequency

ω̄1 � 0.444. The slab refractive index was set to 2.38 in (a) and 2.32 in (b) and (c). For a more detailed image of the structure and the calculated
modes, see Supplement 1.
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We define this fraction r1c � Q1r∕Q1c , where Qc
1 is due to cou-

pling to the pump mode and Qr
1 is the radiative Qr of Fig. 3(a).

Similarly, we write r2c � Q2r∕Q2c , where Qc
2 is associated with

the far-field modes from which the SH signal is collected.
Furthermore, we include a phenomenological extrinsic quality
factor Qe, accounting for effects like linear loss or disorder-
induced scattering, and write the total Qt of the modes as Q−1

it �
Q−1

ir � Q−1
ie for i � 1, 2. In the limit of undepleted pump power

Pi, the conversion efficiency Po∕P2
i for the SH output power Po

can then be written as (see Refs. [12,32] and Supplement 1)

Po

P2
i
� 8

ω1

�
χ�2�effffiffiffiffiffiffiffiffiffi
ϵ0λ1

p
�2

jβ̄j2 Q
4
1t

Q2
1r

Q2
2t

Q2r
r21cr2c , (4)

where ϵ0 is the permittivity of free space and χ�2�eff is determined
by the magnitude of the relevant elements in the susceptibility
tensor. The conversion efficiency is maximized when there are
no extrinsic losses, i.e., when Qie → ∞, and when the two ratios
ric go to unity, which happens when the pump mode completely
overlaps with the far-field radiation pattern at the FH and all the
radiated SH signal is collected.

In Fig. 3(g), we plot the conversion efficiency versus the core
size Nc , assuming no extrinsic losses, for three different values of
ric , reflecting three different scenarios. In the conservative case
(red), rc � �r1,c , r2,c � � �0.2, 0.5�, we assume excitation and col-
lection from only one side of the cavity, and only a partial overlap
of the pump mode with the far-field pattern. In the optimized
case (blue), rc � �0.4, 1.0�, we still assume pumping from one
side only but with a better in-coupling of the pump mode, which
can be achieved through far-field engineering. Furthermore, we
assume that the SH signal is collected from both sides of the slab
for optimal collection efficiency. Finally, the best-case scenario
(green) assumes perfect in- and out-coupling at both frequencies,
which would require either pumping the cavity from both sides or
introducing a reflector on one side and a perfect far-field overlap
in either case. Notably, the values for the conversion efficiency
exceed 100%∕W, even in the conservative case, and go beyond
10,000%∕W in the best-case scenario and Nc > 10.

In Fig. 3(h), we show the effect of extrinsic loss on the maxi-
mum achievable conversion efficiency for three different values of
Qe . This assumes rc � �1, 1� as well as some far-field engineering
such that Q1r matches Qe (for details see Supplement 1). One
notable effect of the extrinsic losses is to set the optimal core size
of the cavity. Specifically, while the nonlinear overlap factor de-
creases with Nc because of the increasing cavity mode volume
[Fig. 3(b)], in the absence of external losses this is more than com-
pensated for by the increasing Q2

1rQ2r product, such that the ef-
ficiency in Fig. 3(g) is monotonically increasing with Nc . This is
also the case for Qe � 106 in Fig. 3(h). However, this changes for
lower extrinsic quality factors, which limit the maximum totalQt .
Thus, the efficiency peaks at Nc � 4 for Qe � 105 and Nc � 2
for Qe � 104. We note that a total (i.e., loaded) quality factor of
44,000 has already been experimentally measured for a GaN PhC
cavity [22], suggesting that Qe approaching 105 should be real-
istic in state-of-the-art systems.

4. CONCLUSION

We conclude by discussing the merits of the cavity presented here
in comparison to previous works. The quantity β̄ shown in
Fig. 3(b) is defined in a way that is particularly useful for compar-
ing to designs in other materials and wavelengths. A comparison
to the devices summarized in Ref. [12] shows that the cavity pre-
sented here is orders of magnitude better than previous PhC
designs either in the product of Q factors, or in the nonlinear
overlap β̄, or in both. In fact, the only designs that outperform
our cavity in terms of β̄ are the topology-optimized micropillars
[12] and microrings [13], which are, however, more challenging
to fabricate in practice. Furthermore, the topology-optimized mi-
cropillars [12] exhibit a significantly lower Q2

1Q2 product and
therefore a much lower conversion efficiency as per Eq. (4)
and FOM1 defined in [12], while the multi-ring designs of

Fig. 3. (a) Radiative quality factors of the two FH modes and of the
SH mode versus core region size Nc . The rest of the heterostructure
parameters are the same as in Fig. 2. (b) The two figures of merit relevant
to SH generation for the different core sizesNc shown in (a). (c)–(e) Polar
far-field emission profiles in the upper half space for the two FH modes
and the SHmode, respectively (cf. Fig. 2). Dashed white lines show emis-
sion angles in steps of 10°. (f ) Schematic of a proposed experimental
setup for SH generation with pump excitation and signal collection from
the vertical direction. (g) SH conversion efficiency in the limit of unde-
pleted pump versus Nc for three different ratios rc of the overlap between
the input/output channels and the heterostructure far field at the FH and
SH frequencies, assuming no extrinsic losses (Qe → ∞). (h) Maximum
attainable efficiency versus core size for three different values of the
extrinsic Qe .
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Ref. [13] cannot be side coupled to an input/output channel and
also offer little engineering possibility for out-of-plane emission.
Alternatively, large microring cavities could support modes with a
Q2

1Q2 product exceeding the one of our design but at the expense
of a much larger footprint [11]. In short, our design combines a
high nonlinear overlap with a high product of Q factors in a very
compact cavity, with the additional advantage of strong vertical
emission at both frequencies.

More broadly, we have outlined a general recipe for designing
high-Q , doubly resonant photonic crystal cavity modes with a
high nonlinear overlap that can be applied to various materials
and setups. This could be useful to further improve the design
presented here, as the fact that much of the field of both modes
is in air indicates that there is enormous room for improvement of
the overlap factor. Thus, for example, by finding another suitable
pair of bands according to our recipe, by exploring PhCs formed
by dielectric rods in air, or by infiltrating the PhC holes with a
nonlinear material, the nonlinear overlap could be further in-
creased to record-high values. Finally, we further notice that
the doubly resonant cavity design proposed here naturally allows
for strong field enhancement in the air holes both at FH and SH.
This unique characteristic might be exploited, e.g., for strongly
enhanced nonlinear sensing of functionalized surfaces [37,38].
All in all, we believe that the generality of our approach coupled
with the well-established fabrication methods for photonic crystal
slabs could enable extremely compact devices for second-order
nonlinear conversion with unprecedented efficiency.
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